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1. The Birch–Swinnerton-Dyer conjecture

For a (connected) smooth projective curve C over the rational numbers Q, it is
known that the rational points CpQq depends on the genus g “ gpCq of C:

(1) If g “ 0, then the local-global principle holds for C, i.e.: CpQq ‰ H if and
only if CpQpq ‰ H for all primes p ď 8 (we understand Qp “ R when
p “ 8). In other words, C is globally solvable if and only if it is locally
solvable everywhere. Another way of stating this is: C » P1

Q if and only if

CQp » P1
Qp for all primes p ď 8. We see that CpQq is either an empty set

or an infinite set.
(2) If g “ 1, CpQq may be empty, finite or infinite. This article will focus on

this case.
(3) If g ě 2, Faltings theorem asserts that CpQq is always finite.

1.1. Mordell–Weil group and Tate–Shafarevich group. For a genus-one curve
C{Q, its Jacobian variety JacpCq is an “elliptic curve”, i.e., a genus-one curve with
a distinguished rational point O. We write E for an elliptic curve defined over Q.
A theorem of Mordell in 1922 asserts that the abelian group EpQq is finitely gen-
erated. This result was later generalized by Weil to abelian varieties over number
fields. Now we call the abelian group EpQq the Mordell–Weil group of E{Q and
write:

EpQq » ZrMW ‘ finite group,

where the integer rMW “ rMW pE{Qq is called the Mordell–Weil rank of E{Q.
The failure of the local-global principle for a genus-one curve over Q is related

to the notion of Tate–Shafarevich group of its Jacobian. The Tate–Shafarevich
group of an elliptic curve E{Q, denoted byXpE{Qq, is closely related to the set of
isomorphism classes of smooth projective curves C{Q such that

JacpCq » E, CpQpq ‰ H, for all primes p ď 8.
1
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The more precise definition is to use Galois cohomology

XpE{Qq :“ KerpH1pQ, Eq Ñ
ź

v

H1pQv, Eqq,

where the map is the product of the localization at all places v of Q (including
the archimedean one). As usual, we denote the Galois cohomology Hipk,Eq :“
HipGalpk{kq, Eq for k “ Q,Qp and i P Zě0. The first cohomology group H1pk,Eq
is called the Weil–Châtelet group. It is the abelian group of principal homoge-
neous spaces for E over k. The group H1pQ, Eq is torsion and abelian, hence so
is the group XpE{Qq. Shafarevich and Tate independently made the following
fundamental conjecture ([41],[46])

Conjecture 1.1. Let E{Q be an elliptic curve. Then the Tate–Shafarevich group
XpE{Qq is finite.

Remark 1. One famous example of elliptic curve with nontrivialX was discovered
by Selmer:

x3 ` y3 ` 60z3 “ 0 Ă P2
Q.

This is the Jacobian of the Selmer curve:

3x3 ` 4y3 ` 5z3 “ 0 Ă P2
Q,

which is locally solvable everywhere but does not have a Q-point.

Remark 2. The order of X can be arbitrarily large. Cassels proved that in the
following family of elliptic curves (with complex multiplication by Zr

?
´3s):

En : x3 ` y3 ` nz3 “ 0,

the 3-torsion of XpEn{Qq is unbounded. To the author’s knowledge, it is still
unknown whether for each prime p, there is an elliptic curve E{Q whose Tate–
Shafarevich group contains an element of order p.

Remark 3. There is an alternating pairing, called the “Cassels–Tate pairing”

XpE{Qq ˆXpE{Qq Ñ Q{Z
whose kernel is precisely the divisible subgroup ofXpE{Qq. Assuming the finiteness
ofX, this gives a non-degenerate alternating pairing onX and it follows that the
elementary divisors of X show up by pairs. In particular, the order of X is a
square.

1.2. Selmer group. As a motivation for defining the Selmer group, we recall the
Hodge conjecture for a smooth projective algebraic variety X{C and a fixed i P Zě0.
The Betti cohomology of even degree H2i

B pXpCq,Zq is a finitely generated abelian
group. Hodge theory allows us to define the subgroup, denoted by HgpXC,Zq, of in-
tegral Hodge classes in H2i

B pXpCq,Zq. This provides a “cohomological description”
of algebraic cycle classes in H2i

B pXpCq,Zq. Denote by AlgpXC,Zq the subgroup of
algebraic cycle classes in H2i

B pXpCq,Zq. Then the Hodge conjecture is equivalent
to the statement that the quotient

“Xi
pX{Cq” :“

HgpXC,Zq
AlgpXC,Zq

is a finite group. We may write this as an exact sequence

0 // AlgpXC,Zq // HgpXC,Zq //Xi
pX{Cq // 0 .(1.1)
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There is also an analogous short exact sequence which gives a cohomological
description of rational points on an elliptic curve E over a number field F :

0 // EpF q bQp{Zp // Selp8pE{F q //XpE{F qrp8s // 0 .(1.2)

Here p is a prime number,XpE{F qrp8s is the p-primary part of Tate–Shafarevich
group, and Selp8pE{F q is the p8-Selmer group defined as follows. Let Erp8s be

the group of p-primary torsion points of EpQq. The absolute Galois group GalF
acts on Erp8s, which is isomorphic to pQp{Zpq2 as an abstract group. Consider the
local Kummer map

δv : EpFvq bQp{Zp Ñ H1pFv, Erp
8sq.

Then Selp8pE{F q is defined as

Selp8pE{F q :“ KerpH1pF,Erp8sq Ñ
ź

v

H1pFv, Erp
8sq{Impδvqq,

where the map is the product of the localization at all places v of F . The Zp-corank
of Selp8pE{F q is denote by rppE{F q. As an abstract abelian group, Selp8pE{F q is
of the form

pQp{ZpqrppE{F q ‘ a finite group.

We have an inequality

0 ď rMW pE{F q ď rppE{F q ă 8,(1.3)

where the equality rMW pE{F q “ rppE{F q holds if and only if the p-primary part
XpE{F qrp8s is finite.

It is also useful to consider the p-Selmer group SelppE{F q and the p-torsion
XpE{F qrps ofXpE{F q. The p-Selmer group can be defined as the fiber product

SelppE{F q //

��

H1pF,Erpsq

��
ś

v EpFvq{pEpFvq

ś

v δv // ś
vH

1pFv, Erpsq

We have the exact sequence of vector spaces over Fp (the finite field of p ele-
ments):

0 Ñ EpF q b Z{pZÑ SelppE{F q ÑXpE{F qrps Ñ 0.

This sequence is called the p-descent (or the first descent) of E{F . It has its genesis
in Fermat’s method of descent, used by him in the 17th century to study certain
Diophantine equations. The p-Selmer group can be effectively computed (though
not necessarily easily).

Comparing with the p8-Selmer group, we have an exact sequence of Fp-vector
spaces

0 Ñ EpF qrps Ñ SelppE{F q Ñ Selp8pE{F qrps Ñ 0,(1.4)

where rps denotes the p-torsion. This sequence turns out to be very useful. For ex-
ample, if SelppE{F q is trivial, so is Selp8pE{F q. If EpF qrps is trivial and dimFp SelppE{F q “
1, then a simple argument using Cassels–Tate pairing shows

Selp8pE{F q » Qp{Zp,
in particular, rppE{F q “ 1. Then the finiteness ofX predicts that rMW pE{F q “ 1.
Such results can indeed be proved unconditionally for nice primes p as we will see.
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1.3. The Birch–Swinnerton-Dyer conjecture. The origins of this conjecture
can be traced back to numerical computations done by Birch and Swinnerton-Dyer
([5]). They were motivated by Siegel’s mass formula for quadratic forms. Recall
that the mass formula provides a weighted count of integral quadratic forms within
a fixed genus class (two forms are said to be in the same genus if they are locally
integrally equivalent for all places). Roughly speaking, the formula expresses the
weighted count (something “global”) as a product of local terms:

ź

p

#GpFpq
pdimG

,(1.5)

where G is the (special) orthogonal group, defined over Z, attached to any a qua-
dratic lattice within the genus class. From this product, one naturally obtain a
product of the values of Riemann zeta function ζpsq at certain integers.

Now for an elliptic curve E{Q, it is natural to investigate the product

ź

pďX

#EpFpq
p

,(1.6)

where #EpFpq is the number of points over the finite field Fp.1
At this moment let us introduce the Hasse–Weil (complex) L-function. It is

defined as an Euler product of local L-factors

LpE{Q, sq “
ź

p

LpE{Qp, sq.(1.7)

The local L-factors are defined as

LpE{Qp, sq “

#

p1´ app
´s ` p1´2sq´1, p - N,

p1´ app
´sq´1, p|N,

where N is the conductor of E{Q, ap “ 1` p´#EpFpq when p - N , and ap “ `1,
´1, 0, respectively, when p|N and E{Qp has split, non-split multiplicative, additive
reduction, respectively.

Note that for p - N , we have

#EpFpq
p

“ 1´ app
´1 ` p´1 “

1

LpE{Qp, 1q
.

The product is formally

ź

pď8

#EpFpq
p

“ “ ”
1

LpE{Q, 1q
.

Based on their numerical computation on the family of elliptic curves arising
from the “congruent number problems”

En : y2 “ x3 ´ n2x,

Birch and Swinnerton-Dyer were then led to the following conjecture ([5]):

ź

pďX

#EpFpq
p

„ c1pE{Qq ¨ plogXqr,(1.8)

1One needs to be careful at the those (finitely many) bad primes.
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and

LpE{Q, sq „ cpE{Qq ¨ ps´ 1qr,(1.9)

where r “ rMW pE{Qq is the Mordell–Weil rank of E{Q and c1pE{Qq and cpE{Qq
are some nonzero constants. Indeed, the asymptotic behavior (1.8) is extremely
strong! By a result of Goldfeld ([14]), (1.8) implies that LpE{Q, sq satisfies the
Riemann hypothesis and (1.9) holds with the constant

cpE{Qq “
?

2erγ

c1pE{Qq
,

where γ is the Euler constant.
The L-function LpE{Q, sq introduced earlier, by the theorems of Wiles, Taylor–

Wiles and Breuil–Conrad–Diamond–Taylor, is equal to the L-series LpfE , sq of a
weight two newform fE of level N . Therefore it extends to an entire function
on C and admits a functional equation with center at s “ 1. The vanishing order
ords“1 LpE{Q, sq at the center s “ 1 is denoted by ranpE{Qq and called the analytic
rank of E{Q.

The Birch–Swinnerton-Dyer conjecture on rank asserts that the analytic rank
and the Mordell–Weil rank coincide.

Conjecture 1.2 (Birch–Swinnerton-Dyer conjecture on rank). Let E be an elliptic
curve over Q. Then we have

ranpE{Qq “ rMW pE{Qq.
Informally speaking, the conjecture implies that knowing enough information of

the L-values means knowing the Mordell–Weil rank.
We would also like to recall the refined conjecture of Birch and Swinnerton-Dyer

on the leading coefficient cpE{Qq of the Taylor expansion of the L-function at its
center of symmetry. We need to define two more ingredients:

(1) the period P pE{Qq,
(2) the regulator RpE{Qq.

To define the period P pE{Qq, we may take any a nonzero invariant differential
ω P H0pE,ΩE{Qq. For each place p ď 8, one may naturally associate a measure

|ω|p on the compact group EpQpq2. Then we define

P pE{Qq :“

˜

ż

EpRq
|ω|8

¸

¨
ź

pă8

˜

LpE{Qp, 1q
ż

EpQpq
|ω|p

¸

,

where the local L-factor is a normalizing factor such that the local term is equal
to one for all but finitely many p. The definition is independent of the choice of a
nonzero ω P H0pE,ΩE{Qq since any other choice differs by a constant α P Qˆ and
we have the product formula:

ś

pď8 |α|p “ 1. One can also define the period by
choosing ω canonically as the Néron differential ω0, which is a generator of the free
Z-module of rank one H0pE ,ΩE{Zq for the Néron model E{Z of E{Q. It is unique
up to ˘1 and hence we have a well-define period

ΩE :“

ż

EpRq
|ω0|8,

2Note that this definition of the period P pE{Qq is very much like that of the Tamagawa number
of a linear algebraic group. This should be natural since Siegel’s mass formula was equivalent to

the fact that the Tamagawa number of the special orthogonal group is 2.
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and we have an explicit formula

P pE{Qq “ ΩE ¨
ź

p|N

cp,(1.10)

where cp is the so-called local Tamagawa number, i.e., the cardinality of the com-
ponent group of the Néron model of E over Zp.

To define the regulator RpE{Qq, we choose a basis P1, P2, ..., Pr of a free subgroup
of finite index I in EpQq and define

RpE{Qq “
detpxPi, Pjyq

I2
,

where xPi, Pjy is the Néron–Tate height pairing. It is easy to see that this does not
depend on the choice of the Pi. In particular, one may choose Pi to generate the
free part of EpQq (i.e., together with the torsion subgroup EpQqtor they generate
EpQq). Then we have an explicit formula

RpE{Qq “
detpxPi, Pjyq

#EpQq2tor
.(1.11)

The regulator measures the density of the Mordell–Weil lattice with respect to the
metric defined by the Néron–Tate height pairing on EpQq bZ R.

Conjecture 1.3 (Birch–Swinnerton-Dyer refined conjecture). Let E be an elliptic
curve over Q of analytic rank r. Then we have

lim
sÑ1

LpE, sq

ps´ 1qr
“ P pE{Qq ¨RpE{Qq ¨#XpE{Qq.(1.12)

This gives a conjectural formula of cpE{Qq in (1.9). In terms of (1.10) and (1.11),
the refined formula can be written as

LprqpE, 1q

r! ¨ ΩE
“ #XpE{Qq ¨

detpxPi, Pjyq

#EpQq2tor
¨
ź

p|N

cp.(1.13)

We can state the refined B-SD conjecture in a manner more analogous to Weil’s
conjecture on Tamagawa numbers. Define the Tamagawa number of E{Q as

τpE{Qq :“

ś

pď8 LpE{Qp, 1q
ş

EpQpq |ω|p

L˚pE, 1q
¨RpE{Qq, L˚pE, 1q “ LprqpE, 1q{r!.

Then the refined B-SD conjecture is equivalent to

τpE{Qq “
1

#XpE{Qq
.

This resembles the formula proved by T. Ono for the Tamagawa number of an
algebraic torus T Ă GLn defined over a number field (or a function field over a
finite field) F

τpT {F q “
#PicpT {F q

#XpT {F q
.

Here the “Picard group” PicpT {F q is defined as H1pF,XpT qq for the character
groupXpT q “ HompT,Gmq with the natural GalF -action, andXpT {F q :“ KerpH1pF, T q Ñ
ś

vH
1pFv, T qq is a finite group.

Remark 4. The Birch and Swinnerton-Dyer conjecture for both the rank and the
refined formula has a natural generalization to abelian varieties over an arbitrary
number field ([48]).
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Remark 5. In [6] Bloch gave a volume-theoretical interpretation of the conjectural
formula (1.12) as the Tamagawa number conjecture for an algebraic group which
is an extension of the elliptic curve E by an algebraic torus.

Remark 6. If we replace the base field Q by a function field F (such as Fqptq over
a finite field Fq), the finiteness ofXpE{F q is equivalent the Birch and Swinnerton-
Dyer conjecture 1.2 on rank, and implies the refined conjecture 1.3. It is also
equivalent to the Tate conjecture for elliptic surfaces over a finite field.

For some historical account of the B-SD conjecture, the readers are invited to
consult the articles [5], [47] and [18].

1.4. The status to date. For the rank part, by far the most general result for
elliptic curves over Q is obtained using the Gross–Zagier formula and the Heegner
point Euler system of Kolyvagin:

Theorem 1.4 (Gross–Zagier, Kolyvagin). If ranpE{Qq ď 1, then ranpE{Qq “
rMW pE{Qq and XpE{Qq is finite.

S. Zhang generalized this result to many modular elliptic curves (and modular
abelian varieties of GL2-type) over totally real number fields ([58]).

The proof of this result requires a suitable auxiliary choice of imaginary quadratic
field. Such auxiliary choice exists by a non-vanishing result in analytic number
theory ([7], [38]).

Remark 7. Kato has an independent proof using his Euler system ([29]) that, if
ranpE{Qq “ 0, then rMW pE{Qq “ 0 and XpE{Qq is finite. Bertolini and Darmon
in [4] also prove that if ranpE{Qq “ 0, then rMW pE{Qq “ 0. For elliptic curves
E{Q with complex multiplication, Coates–Wiles ([8]) earlier already proved that if
ranpE{Qq “ 0, then rMW pE{Qq “ 0.

Regarding the refined formula (1.12), Rubin proved that, for elliptic curves E{Q
with complex multiplication by an imaginary quadratic field K, if ranpE{Qq “ 0,
then (1.12) holds up to some primes dividing the order of the group of units OˆK .
If ranpE{Qq “ 1 for E with complex multiplication, there are results on the refined
B-SD formula due to Perrin–Riou ([39], for ordinary primes) and Kobayashi ([30],
for supersingular primes).

For elliptic curves E{Q without complex multiplication, the theorem of Kato and
Skinner–Urban on the Iwasawa–Greenberg main conjecture for GL2 ([44]) implies
that the p-part of the formula (1.12) holds for nice p in the case rpE{Qq “ 0:

Theorem 1.5 (Kato, Skinner–Urban). Let E{Q be an elliptic curve with conductor
N . Let p ě 3 be a prime such that:

(1) E has good ordinary reduction at p.
(2) ρE,p is surjective.
(3) There exists a prime `||N such that ρE,p is ramified at `.

If LpE, 1q ‰ 0, then the p-part of the B-SD formula (1.12) holds, i.e.:

ˇ

ˇ

ˇ

ˇ

LpE, 1q

ΩE

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#XpE{Qq ¨
ź

`|N

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

.

Remark 8. The condition p3q can be removed by recent work of X. Wan [54].
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A recent result of the author ([67]) is that the p-part of the formula (1.12) holds
for nice p in the case rpE{Qq “ 1.

Theorem 1.6. Let E{Q be an elliptic curve of conductor N . Let p ě 5 be a prime
such that:

(1) E has good ordinary reduction at p.
(2) ρE,p is surjective.
(3) There exist at least two primes `||N where ρE,p is ramified.
(4) If ` ” ˘1 mod p and `||N , then ρE,p is ramified at `.

If ranpE{Qq “ 1, then the p-part of the B-SD formula (1.12) holds, i.e.:

ˇ

ˇ

ˇ

ˇ

L1pE, 1q

ΩE ¨RpE{Qq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#XpE{Qq ¨
ź

`|N

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

.

Remark 9. Implicitly in the last two theorems, the ratios LpE,1q
ΩE

and L1pE,1q
ΩE ¨RpE{Qq are

rational numbers. Moreover, there are similar results for modular abelian varieties
of GL2-type over Q. But it is not yet completely understood how to generalize
them to totally real number fields.

Remark 10. For an elliptic curve E{Q, let jE P Q be the j-invariant. Let N be its
conductor and ∆E its minimal discriminant. Then for a prime `||N , we have

v`p∆Eq “ ´v`pjEq.

The residual representation ρE,p is ramified at `||N if and only if p - v`pjEq.

Remark 11. It seems difficult to obtain the same result for small primes p, especially
p “ 2. However, Tian ([48], [49]) and Tian–Yuan–S. Zhang ([50]) have proved the
2-part of the B-SD formula in the case of analytic rank zero or one, for “many”
(expected to be of a high percentage) quadratic twists of the congruent number
elliptic curve:

En : y2 “ x3 ´ n2x.

1.5. Recent results on Selmer groups.

Theorem 1.7. Let E{Q be an elliptic curve of conductor N . Let p ě 3 be a prime
such that:

(1) E has good ordinary reduction at p.
(2) ρE,p is irreducible.
(3) There exists a prime `||N such that ρE,p is ramified at `.

Then the following are equivalent

(1) rppE{Qq “ 0.
(2) rMW pE{Qq “ 0 and the p-primary XpE{Qqrp8s is finite.
(3) ranpE{Qq “ 0.

Remark 12. p2q ñ p1q holds trivially for all p; p3q ñ p2q follows from Theorem 1.4
(and true for all p) or Kato’s theorem; p1q ñ p3q is due to Skinner–Urban ([44]).

Theorem 1.8. Let E{Q be an elliptic curve of conductor N . Let p ě 5 be a prime
such that:

(1) E has good ordinary reduction at p.
(2) ρE,p is surjective.
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(3) There exist at least two primes `||N where ρE,p is ramified.
(4) If ` ” ˘1 mod p and `||N , then ρE,p is ramified at `.

Then the following are equivalent

(1) rppE{Qq “ 1.
(2) rMW pE{Qq “ 1 and the p-primary XpE{Qqrp8s is finite.
(3) ranpE{Qq “ 1.

Remark 13. p2q ñ p1q holds trivially for all p; p3q ñ p2q follows from Theorem 1.4
(and true for all p); p1q ñ p3q is a consequence of the Kolyvagin conjecture proved
by the author in [67] (also cf. §4, Remark 22). Y. Tian ([48], [49]) first proved a
result of the type p1q ñ p3q for p “ 2 and many quadratic twists of the congruent
number elliptic curve. Skinner ([42]) has also proved a result of the type p2q ñ p3q.

The interest of the result of type p1q ô p2q in both theorems lies in the fact
that the statements are purely algebraic and do not involve the L-values (though
the current proof, as we will see, must go through the study of special value of L-
function). Much of the appeal stems from the fact that the assumption rppE{Qq “ 0
or 1 is usually easy to check. For instance, by (1.4), if ErpspQq “ 0 (automatically
true when ρE,p is irreducible) and dimFp SelppE{Qq “ d P t0, 1u, then we have
rppE{Qq “ d.

Theorem 1.8 leads to the following converse to the theorem of Gross–Zagier and
Kolyvagin 1.4.

Theorem 1.9. Let E{Q be an elliptic curve of conductor N . Assume that there
are at least two distinct prime factors `||N . Then we have

rMW pE{Qq “ 1 and #XpE{Qq ă 8 ùñ ords“1LpE{Q, sq “ 1.

This is proved in [67], and earlier by Skinner [42] for square-free N using different
methods.

1.6. Outline of this survey. This survey article will be devoted to some main
ingredients in the proof of Theorem 1.6 and 1.8, as well as some partial generaliza-
tion to higher rank motives. The complete proof of Theorem 1.6 and 1.8 is given
in [67].

The section §2 is devoted to the Waldspurger formula for GL2, and its general-
ization to higher rank groups, i..e, the global Gan–Gross–Prasad conjecture and its
refinement.

The section §3 is devoted to the Gross–Zagier formula on Shimura curves. We
aim to state this formula in the most general form, due to Yuan–Zhang–Zhang
[56]. The formulation is completely parallel to that of Waldspurger formula in §2.
On the earlier developments on Heegner points and the Gross–Zagier formula with
certain ramification hypothesis, the reader may consult a previous CDM article by
S. Zhang [60].

The section §4 is devoted to the Heegner point Kolyvagin system and the struc-
ture of Selmer groups. Particularly, the attention is paid to the Kolyvagin conjec-
ture on the divisibility of higher Heegner points, which the author proved under a
certain local condition in [67].

We have been unable to include the Iwasawa theoretical aspect (which yields the
proof of Theorem 1.5 and 1.7 of Kato, Skinner–Urban) into this survey. The reader
may consult a previous CDM article by Skinner [43].
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2. Waldspurger formula for GL2 and higher rank groups

2.1. A formula of Gross. We start with a formula proved by Gross [15]. Let f be
a newform of weight two and level N , with trivial nebentypus. Let K “ Qr

?
´Ds

be an imaginary quadratic extension with discriminant ´D ă ´4, pD,Nq “ 1. This
determines a unique factorization

N “ N`N´(2.1)

where the prime factors of N` (N´, resp.) are all split (inert, resp.) in K. Assume
that N´ is square-free. Then the root number

εpf{Kq “ 1

if and only if N´ has odd number of prime factors, which we assume now. Let B be
the unique quaternion algebra over Q which is ramified at exactly primes dividing
N´ and 8. Let πB be the Jacquet–Langlands correspondence of the automorphic
representation π associated to f . We may consider an Eichler order OB,N` in OB

with level N` and define the Shimura set as

XN`,N´ :“ BˆpQqzBˆpAf q{pOB,N` b
pZqˆ.(2.2)

This may be interpreted as the set of one-sided ideal classes of the Eichler order.
Let φ be a new-vector of πB . It defines a function on XN`,N´ . Embed K into B
so that K XOB,N` “ OK . This induces an embedding of the ideal class group of
K into the Shimura set:

PicpOKq » Kˆz pKˆ{ pOˆK ãÑ XN`,N´ .

For a function φ : XN`,N´ Ñ C we define

PKpφq “

ż

tPPicpOKq
φptqdt,

and

xφ, φy “

ż

XN`,N´

φpxqφpxqdx,

where dt (dx, resp.) is the counting measure on the finite set PicpOKq (XN`,N´ ,
reap.).

Consider the Petersson inner product defined by

pf, fq :“ 8π2

ż

Γ0pNqzH
fpzqfpzqdxdy “

ż

X0pNq

ωf ^ iωf ,(2.3)

where ωf :“ 2πifpzqdz. Let Lpf{K, sq be the L-function (without the archimedean
factor) with the classical normalization, i.e, the center of functional equation is at
s “ 1.

Theorem 2.1. We have

Lpf{K, 1q

pf, fq
“

1
a

|D|

|PKpφq|
2

xφ, φy
.(2.4)

Now we specialize to an f associated to an elliptic curve E{Q. Then we have
Lpf{K, sq “ LpE{K, sq. We consider a modular parameterization, still denoted by
f ,

f : X0pNq Ñ E,(2.5)
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which we assume maps the cusp p8q to zero. The pull-back of the Néron differential
ω on E is f˚ω “ c ¨ ωf for a constant c (called “Manin constant”). It is known
that the constant c is an integer. If f is an optimal parameterization, it is called
the Manin constant and conjecturally equal to 1. By a theorem of Mazur, we have
p|c ùñ p|2N .

The automorphic form φ on the Shimura set XN`,N´ is normalized so that it is
integral and its image contains 1. It is then unique up to ˘1. Then the formula
(2.4) can be rewritten as a form that is close the Birch–Swinnertod-Dyer formula
for E{K (cf. (1.13)):

LpE{K, 1q

|D|´1{2
ş

EpCq ω ^ ω
“

1

c2
degpfq

degpφq
|PKpφq|

2.(2.6)

The term degpφq :“ xφ, φy is an analogue of the modular degree degpfq, even though
there is no physical modular parameterization of E by the set XN`,N´ .

2.2. Waldspurger formula for GL2.

2.2.1. The period integral. We fix the following data:

‚ F a number field with adeles denoted by A “ AF .
‚ G “ Bˆ as an algebraic group over F . Here B is a quaternion algebra over
F . Its center is denoted by ZG.

‚ E{F a quadratic extension of number fields 3, with a fixed embedding
E ãÑ B. Denote by H “ Eˆ, viewed as an algebraic group over F . The
embedding E ãÑ B makes H a subgroup of G.

‚ η : FˆzAˆ Ñ t˘1u the quadratic character associated to E{F by class field
theory.

‚ π an irreducible cuspidal automorphic representation of G.
‚ χ : HpF qzHpAq Ñ Cˆ, a (unitary) character compatible with the central

character ωπ of π:

ωπ ¨ χ|Aˆ “ 1.

Then we consider a linear functional on π defined by

Pχpφq :“

ż

ZGpAqHpF qzHpAq
φphqχphqdh, φ P π.(2.7)

Since H is a torus, this is sometimes called a toric period. It is obviously HpAq-
invariant:

Pχ P HomHpAqpπ b χ,Cq.

2.2.2. Branching law. Analysis of this last space itself leads to interesting questions
on branching laws, familiar to us from representation theory. Decompose π “ bvπv
as a tensor product, and similary χ “ bχv. Then we have

‚ Multiplicity one: dim HomHpFvqpπv b χv,Cq ď 1.

‚ Dichotomy: Let π0
v be an infinite dimensional irreducible representation of

GL2pFvq. Let Bv be the unique division quaternion algebra over Fv and
π1
v the representation of Bˆv associated to π0

v by Jacquet and Langlands

3There is a notational nightmare at this point: we have been using E for a quadratic extension
in many places while it is also customary to use E for an elliptic curve. We warn the reader about

the inconsistence in different sections of this article.
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(where we set π1
v “ 0 if π0

v is not a discrete series representation). Then we
have a dichotomy:

dim HomHpFvqpπ
0
v b χv,Cq ` dim HomHpFvqpπ

1
v b χv,Cq “ 1.

‚ Root number: It is possible to relate the vanishing or non-vanishing of the
above Hom spaces to root numbers. A theorem of of Tunnell and Saito
asserts that dim HomHpFvqpπ

i
v b χv,Cq “ 1, i P t0, 1u if and only if

εp1{2, πv, χvq “ p´1qiχvp´1qηvp´1q,

where εp1{2, πv, χvq P t˘1u is the local root number associated to the rep-
resentation πv,Ev b χv, the base change to Ev twisted by χv.

2.2.3. Local canonical invariant form. So far there seems to be no natural construc-
tion of any element in HomHpFvqpπv b χv,Cq. However, Waldspurger constructed
a natural element in the (at most one-dimensional) space

HomHpFvqpπv b χv,Cq bHomHpFvqpπ
_
v b χ

´1
v ,Cq,

where π_v is the contragredient of πv. Let x¨, ¨y be the canonical pairing πvˆπ
_
v Ñ C.

Define an average of the matrix coefficient

αvpφv, ϕvq “

ż

ZGpFvqzHpFvq

xπvphqφv, ϕvyχvphq dh.(2.8)

The integral is absolutely convergent for any unitary representation πv and defines
a canonical invariant form:

αv P HomHpFvqpπv b χv,Cq bHomHpFvqpπ
_
v b χ

´1
v ,Cq.

When πv is unramified4, and the vectors φv, ϕv are fixed by Kv such that
xφv, ϕvy “ 1, we have

αvpφv, ϕvq “ L pπv, χvq :“
ζFv p2qLp1{2, πv,Ev b χvq

Lp1, πv,AdqLp1, ηvq
.

Therefore, for global purposes, we normalize the canonical invariant form αv as
follows:

α6vpφv, ϕvq “
1

L pπv, χvq
αvpφv, ϕvq.(2.9)

2.2.4. Waldspurger formula. We define a global pairing π ˆ π_ Ñ C using the
Petersson inner product

xφ, ϕy “

ż

ZGpAqGpF qzGpAq
φpgqϕpgqdg, φ P π, ϕ P π_,

where we choose the Tamagawa measure on GpAq. We normalize the measure
dh on HpAq and the measures dhv on HpFvq such that dh “

ś

v dhv. Then the
Waldspurger formula ([52]) can be stated as follows.

Theorem 2.2 (Waldspurger). For φ “ bφv P π, ϕ “ bϕv P π
_, we have

(2.10)
PpφqPpϕq

xφ, ϕy
“

1

4

ζF p2qLp1{2, πE b χq

Lp1, π,AdqLp1, ηq

ź

v

α6vpφv, ϕvq

xφv, ϕvyv
.

4For a non-archimedean place v we say that πv is unramified if the quadratic extension E{F is
unramified at v, the group GpFvq has a hyperspecial subgroup Kv “ GpOvq and πv has a nonzero

Kv-fixed vector.
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The formula of Gross (2.4) in the beginning of this section can be viewed as
an explicit Waldspurger formula for the new vectors in the representation space
π, π_, when F “ Q, E “ Qr

?
´Ds, the central character ωπ and the character χ

are trivial. In various setting, such explicit formulae were also considered by S.
Zhang et al in [59], [61], [50]. It is well-known that they play an important role
in the arithmetic study of elliptic curves and modular forms, intimately related to
some “explicit reciprocity law” for instance.

2.3. The global Gan-Gross-Prasad conjecture and its refinement. Study of
the Waldspurger formula for GL2 has exploded into a broad web of conjectures on
branching problems, automorphic periods, and L-functions, due to Gross–Prasad
[19] [20] in the 1990s, Gan–Gross–Prasad more recently [9], and Ichino–Ikeda [26],
N. Harris [23]. To describe them, let G be a reductive group and H a subgroup
defined over a number field F (with adeles A). Let π be an automorphic cuspidal
representation of G. Then we consider the automorphic period integral, as a linear
functional on π:

PHpφq :“

ż

HpF qzHpAq
φphqdh, φ P π,(2.11)

in the orthogonal and Hermitian cases in [9]. To describe them let F be a number
field and let E “ F in the quadratic case and E a quadratic extension of F in
the Hermitian case. Let Wn`1 be a quadratic space or Hermitian space with E-
dimension n`1. Let Wn ĂWn`1 be a non-degenerate subspace of codimension one.
Let Gi be SOpWiq or UpWiq for i “ n, n ` 1. Then the Gan-Gross-Prasad period
is the period integral (2.11) attached to the pair pH,Gq where G “ GnˆGn`1 and
H Ă G is the diagonal embedding of Gn.

Let π “ πn b πn`1 be a cuspidal automorphic representation of GpAq. Let
Πi,E be the standard functoriality transfer from Gi to suitable GLN pAEq: in the
Hermitian case, this is the base change of πi to GLipAEq; in the orthogonal case,
this is the endoscopic transfer from GipAq to GLipAq (GLi´1pAq, resp.) if i is even
(odd, resp.). We will assume the expected properties of the theory of the endoscopic
functoriality transfer from classical group to the general linear group.

Two Langlands L-functions enter the stage:

‚ The L-function Lps, π,Rq for a certain representation R of the L-group LG.
‚ The adjoint L-function Lps, π,Adq (cf. [9, §7]).

The first L-function Lps, π,Rq can be defined more explicitly as Lps,Πn,E ˆ

Πn`1,Eq, the Rankin-Selberg convolution L-function due to Jacquet–Piatetski-Shapiro–
Shalika ([27]) (known to be the same as the one defined by the Langlands–Shahidi
method).

Denote ∆n`1 “ LpM_p1qq where M_ is the motive dual to the motive M
associated to Gn`1 defined by Gross ([17]). It is a product of (special values of)
Artin L-functions. We will be interested in the following combination of L-functions

L ps, πq “ ∆n`1
Lps, π,Rq

Lps` 1
2 , π, Adq

.(2.12)

They are completely analogous to the L-functions appeared in Waldspurger formula
(2.10). We also write L ps, πvq for the corresponding local factor at v.

The global Gan–Gross–Prasad conjecture asserts that the non-vanishing of the
linear functional PH on π (possibly by varying the orthogonal/Hermitian spaces
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pW,V q and switching to another member in the Vogan L-packet (cf. [9, §9-11]) of
π) is equivalent to the non-vanishing of the central value Lp 1

2 , π,Rq of the Rankin-
Selberg L-function. This conjectural equivalence is proved in the Hermitian case for
π satisfying some local conditions in [64]. One direction of the equivalence for both
the orthogonal and Hermitian cases had also been proved by Ginzburg–Jiang–Rallis
(cf. [12], [13]) when the group G is quasi-split and the representation π is generic.

For arithmetic applications, it is necessary to have the refinement of the Gan-
Gross-Prasad conjecture, namely a Waldspurger formula for the period PH anal-
ogous to (2.10). For simplicity let rHs denote the quotient HpF qzHpAq; similarly
define rGs. We endow HpAq (GpAq, resp.) with their Tamagawa measures and rHs
(rGs, resp.) with the quotient measure by the counting measure on HpF q (GpF q,
resp.). Let x¨, ¨y be the Peterson inner product

xφ, ϕy “

ż

rGs

φpgqϕpgq dg, φ P π, ϕ P π_.(2.13)

To define a local canonical invariant form, we again consider the integration of
matrix coefficients: for φv, ϕv P π

_
v ,

αvpφv, ϕvq “

ż

Hv

xπvphqφv, ϕvyv dh, Hv “ HpFvq.(2.14)

Here we normalize the measure dh on HpAq and the measures dhv on HpFvq such
that dh “

ś

v dhv. Ichino and Ikeda showed that this integral converges absolutely.
When πv is unramified and the vectors φv, ϕv are fixed by a hyperspecial compact
open GpOvq such that xφv, ϕvyv “ 1, we have

αvpφv, ϕvq “ L p
1

2
, πvq ¨ volpHpOvqq.

Analogous to (2.9) we normalize the local canonical invariant form αv:

α6vpφv, ϕvq “
1

L p 1
2 , πvq

ż

Hv

xπvphqφv, ϕvyv dh.(2.15)

The refined (global) Gan–Gross–Prasad conjecture as formulated by Ichino–
Ikeda and N. Harris (cf. [26], [23]) states:

Conjecture 2.3. Assume that π is tempered, i.e., πv is tempered for all v. For
φ “ bφv P π, ϕ “ bϕv P π

_, we have

(2.16)
PpφqPpϕq

xφ, ϕy
“

1

|Sπ|
L p

1

2
, πq

ź

v

α6vpφv, ϕvq

xφv, ϕvyv
,

where Sπ is a finite elementary 2-group: the component group associated to the
L-parameter of π “ πn b πn`1.

Remark 14. The refined conjecture for SOp3qˆSOp4q, concerning “the triple prod-
uct L-function”, was established after the work by Garrett [11], Piatetski-Shapiro–
Rallis, Harris–Kudla [22], Gross–Kudla, Watson [55], and Ichino [25]. Gan and
Ichino ([10]) established some new cases for SOp4q ˆ SOp5q. Liu ([35]) proves some
endoscopic cases for SOp2q ˆ SOp5q and SOp3q ˆ SOp6q. All of these results utilize
the theta correspondence.

In [65], the above refined Gan–Gross–Prasad conjecture is proved in the Hermit-
ian case, under the following local conditions:
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(i) There exists a split place v such that the local component πv is supercus-
pidal.

(ii) If πv is not unramified, then either v is split in E{F , or Hv is compact or
πv is supercuspidal.

(iii) If πv is unramified, then its residue characteristic of Fv is larger than a
constant cpnq. The constant is defined such that the Jacquet–Rallis funda-
mental lemmaholds when the residue characteristic p ě cpnq for a constant
cpnq depending only on n (cf. [57] and its appendix).

The method of the proof of both the unrefined (in [64]) and the refined (in [65])
conjecture in the Hermitian case is to study the relative trace formula initiated by
Jacquet–Rallis ([28]). One crucial ingredient—the fundamental lemma—is proved
by Z. Yun ([57]). For other ingredients, one may consult the expository article [66].

In [9], Gan–Gross–Prasad also proposed a local conjecture to address the three
questions on the branching law: the multiplicity one, the dichotomy and the re-
lation to local root number. The local conjecture specifies the pure inner form
of the reductive group G and the representation in the L-packet which makes the
local canonical invariant form non-vanishing. There has been substantial progress
towards a complete resolution to the local conjectures (at least for p-adic local
fields), due to many people: Aizenbud–Gourevitch–Rallis–Schiffmann [1] and Sun–
Zhu [45] for the multiplicity-one theorem, Waldspurger [53] (orthogonal groups)
and Beuzart-Plessis [2] (unitary groups) for the dichotomy and the relation to root
numbers.

Gan–Gross–Prasad also made analogous conjectures for pW,V q where W is not
not necessarily of codimension one. Towards this, in the Hermitian cases, Yifeng
Liu in [34] has generalized Jacquet–Rallis’s construction of relative trace formulae,
and proved some cases of relevant fundamental lemmas. Recently, Yifeng Liu in
[35] has also extended the formulation of the refined conjecture to more general
Bessel periods.

3. Gross–Zagier formula for GL2

In this section, we recall the formulation of the general Gross–Zagier formula for
GL2, following the joint work by X. Yuan, S. Zhang and the author in [56].

3.1. Gross–Zagier fromula for XN`,N´ . As an example, we first give an explicit
version of the formula in [56] in a special case, which is used in the proof of Theorem
1.6.

In 1950s, Heegner first realized that modular parameterization could be used
to construct rational points on elliptic curves [24]. By applying this idea to the
congruent number curve y2 “ x3 ´ n2x, Heegner proved that all primes p ” 5 p
mod 8q are congruent numbers. His method also essentially proved that Gauss’s
list of imaginary quadratic fields with class number one is complete.

Heegner’s idea was to use the theory of complex multiplication to construct
special points on the modular curves X0pNq. This led to the computation of Birch
and Stephens on what are now called Heegner points, cf. a historical account by
Birch [3]. To define these points, one needs an auxiliary imaginary quadratic field
K “ Qr

?
´Ds with discriminant ´D ă 0. For simplicity we assume D ą 4. We

impose the Heegner hypothesis: every prime factor `|N is split in K. It follows that
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there exists an ideal N of OK , the ring of integers of K, such that

OK{N » Z{NZ.

Then the elliptic curves C{OK and C{N´1 are naturally related by a cyclic isogeny
of degree N , therefore define a point, denoted by xp1q, on X0pNq. By the theory
of complex multiplication, the point xp1q is defined over the Hilbert class field H
of K. By class field theory, the Galois group GalpH{Kq is isomorphic to the class
group PicpOKq.

To have a complete analogue of §2.1, we assume that the factorization N “

N`N´ in (2.1) satisfies the generalized Heegner hypothesis: N´ is square-free and
has even number of prime factors. The Heegner hypothesis corresponds to the case
N´ “ 1. We need to use the Shimura curve XN`,N´ associated to quaternion
algebra ramified precisely at prime factors of N´, whose definition is given in the
next paragraph. Then one may similary define a point xp1q P XN`,N´pHq.

Let E{Q be an elliptic curve with conductor N and f the associated weight two
newform. Consider a modular parameterization

φ : XN`,N´ ÝÑ E.

If N´ “ 1 we require this morphism to send p8q to zero; in general one needs to
normalize it in a certain way we will describe later on. Define

yp1q “ φpxp1qq P EpHq, yK “ trH{K yp1q P EpKq.(3.1)

The generalized Heegner hypothesis ensures that the global root number

εpE{Kq “ ´1.

Then the Gross–Zagier formula for XN`,N´ is as follows, stated analogous to the
formula (2.4):

Theorem 3.1. We have

L1pf{K, 1q

pf, fq
“

1
a

|D|

xyK , yKy

degpφq
,(3.2)

where pf, fq is the Petersson inner product (2.3), and xyK , yKy is the Néron–Tate
height pairing over K.

This is proved by Gross–Zagier in [21] when N´ “ 1, in general by S. Zhang in
[58] and Yuan–Zhang–Zhang in [56].

To have an analogue to the formula (2.6), we choose a parameterization by the
modular curve X0pNq, already appearing in §2.1 (2.5):

f : X0pNq Ñ E.

Let c be the constant such that f˚ω “ c ¨ ωf . Then an equivalent form of the
formula (3.2) is

L1pE{K, 1q

|D|´1{2
ş

EpCq ω ^ ω
“

1

c2
degpfq

degpφq
xyK , yKy.(3.3)

In the rest of this section, we state the most general Gross–Zagier formula for GL2

over a totally real field, following the book [56].
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3.2. Quaternions and Shimura curves. Let F be a number field with adele ring
A “ AF and let Af be the ring of finite adeles. Let Σ be a finite set of places of F .
We then have the quaternion algebra B over A with ramification set ΣpBq :“ Σ, i.e.,
the unique (up to isomorphism) A-algebra, free of rank 4 as an A-module, whose
localization Bv :“ B bA Fv is isomorphic to M2pFvq if v R Σ and to the unique
division quaternion algebra over Fv if v P Σ. If #Σ is even then B “ B bF A for a
quaternion algebra B over F . In this case, we call B a coherent quaternion algebra.
If #Σ is odd, then B is not from any quaternion algebra over F . In this case, we
call B an incoherent quaternion algebra (cf. Kudla’s notion of incoherent collections
of quadratic spaces, [33]).

Now assume that F is a totally real number field in the rest of this section and
that B is a totally definite incoherent quaternion algebra over A. Here “totally
definite” means that Σ contains all archimedean places, i.e., Bτ is the Hamiltonian
quaternion for every archimedean place τ of F . We then have a (compactified)
Shimura curve XU over F indexed by open compact subgroups U of Bˆf :“ pBbA
Af qˆ. For any embedding τ : F ãÑ C, let Bpτq be the unique quaternion algebra
over F with ramification set Σztτu, and identify Bf with BpτqAf as an Af -algebra.
Then the complex points of XU,τ :“ XU ˆF,τ C form a Riemann surface with a
uniformization:

XU,τ pCq » BpτqˆzH˘ ˆ Bˆf {U Y tcuspsu, H˘ :“ CzR,(3.4)

where Bpτqˆ acts on H˘ through an isomorphism Bpτqτ »M2pRq. The set tcuspsu
is non-empty if and only if F “ Q and Σ “ t8u, in which case the Shimura curve
XU is a modular curve.

For later purposes, we will give a class of examples of Shimura curves which
resemble the classical modular curve X0pNq with Γ0pNq-level structure. Let F “ Q
and fix positive integers N` and N´ such that pN`, N´q “ 1 and N´ is square-free
with even number of prime factors (cf. the Shimura set XN`,N´ (2.2) when νpN´q
is odd). We consider the indefinite quaternion algebra B over Q that is ramified
precisely at all factors of N´. Then the Shimura curve XN`,N´ is XU where the
compact open U Ă BˆpAf q is prescribed by

UN`,N´ “
ź

`ă8

U`, U` “

#

Γ0pNq, `|N`,

OˆB` , ` - N`.

Equivalently, we may consider an Eichler order OB,N` in OB with level N` and
define

UN`,N´ “ pOB,N` b
pZqˆ.(3.5)

In particular, if N´ “ 1, the curve XN`,N´ is the classical modular curve X0pN
`q,

whose complex points are Γ0pN
`qzH together with cusps.

For any two open compact subgroups U1 Ă U2 of Bˆf , one has a natural surjec-
tive morphism πU1,U2

: XU1
Ñ XU2

. Let X be the projective limit of the system
tXUuUĂBˆf

. It is a regular scheme over F , locally noetherian but not of finite type.

On the curve XU , there is a distinguished class ξU P PicpXU qQ with degree
equal to one on every connected component of XU . In the case of the modular
curve X0pNq, one may work with the divisor class of the cusp p8q. In general, one
uses a normalized Hodge class, cf. [56, §3.1.3] for details.
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3.3. Abelian varieties parametrized by Shimura curves. We will be inter-
ested in the isogeny factors of the Jacobian of Shimura curves. For a simple abelian
variety A over F , we say that A is parametrized by X if there is a non-constant
morphism XU Ñ A over F for some U . If A is parametrized by X, then A is of
strict GL(2)-type in the sense that

M “ End0
pAq :“ EndF pAq bZ Q

is a field and LiepAq is a free module of rank one over M bQ F by the induced
action.

We now define a Q-vector space:

πA “ Hom0
ξpX,Aq :“ lim

ÝÑ
U

Hom0
ξU pXU , Aq,

where Hom0
ξU pXU , Aq consists of morphisms in HomF pXU , Aq bZ Q with the fol-

lowing property: if ξU is represented by a divisor
ř

i aixi on XU,F , then f P

HomF pXU , Aq bZ Q is in πA if and only if
ř

i aifpxiq “ 0 in ApF qQ. For example,
if A is an elliptic curve over Q of conductor N , then there exists a non-constant
morphism φ : X0pNq Ñ A that maps the cusp p8q to 0 P A. Then such a modular
parameterization φ defines an element in πA.

The curve X admits a Bˆf -action by Hecke correspondence. Making Bˆ8 act

trivially, we have a Bˆ-action. Then the space πA admits a natural Bˆ-module
structure. Note that πA also admits an M -action. In [56] we say that πA is an
automorphic representation of Bˆ over Q, if the Jacquet–Langlands transfer of πA,C
to GL2pAq is automorphic. It is proved in [56] that

EndBˆpπAq “M

and that πA has a decomposition as a restricted tensor product

πA “
â

M

πv,

where πv is an absolutely irreducible representation of Bˆv over M . Denote by ωA
the central character of πA.

Remark 15. We note that the way we form the representation space πA is analo-
gous to the passage from a classical holomorphic modular form to the associated
automorphic representation: if we have a Hecke eigenform f which is a classical
holomorphic modular form of a certain weight, then one may take all Hecke trans-
lations to form an automorphic representation of GL2pAq. For comparison, for a
reductive group G over F , an automorphic form is a function f : GpF qzGpAq Ñ C
with values in C; an element in πA can be viewed as an “automorphic form” on a
Shimura curve with values in an abelian variety A.

We may then define the L-function attached to the M -representation πA

Lps, πAq “
ź

v

Lvps, πvq PM bQ C.

It has an analytic continuation to an entire function of s P C. This is done by
invoking the Jacquet–Langlands transfer of πA to GL2pAq. We will take the com-
plete L-series using suitable Γ-functions at archimedean places. One may think of
Lps, πAq as a tuple Lps, πA, ιq indexed by ι P HompM,Cq.
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Remark 16. There is also a motivic definition of the L-function of A. For example,
when A is an elliptic curve over Q, the L-function Lps,Aq is the L-function defined
by (1.6) completed by a certain Γ-function.

3.4. Duality. If A is parametrized by a Shimura curve X, then the dual abelian va-
riety A_ is also parametrized by X. Then the endomorphism field M_ “ End0

pA_q
is canonically isomorphic to M by sending a homomorphism m : AÑ A to its dual
m_ : A_ Ñ A_.

One may define a perfect Bˆ-invariant pairing

p¨, ¨q : πA ˆ πA_ ÝÑM

as follows. Let f1,U P Hom0
ξU pXU , Aq, f2,U P Hom0

ξU pXU , A
_q. By Albanese func-

toriality, f1,U induces an element in HompJU , Aq, still denoted by f1,U , where JU
is the Jacobian of XU . Similarly we have f2,U P HompJU , A

_q. Let f_2,U : AÑ JU
be the dual of f2,U , where we identify J_U » JU . We then define

pf1, f2q “
pf1,U ˝ f

_
2,U q

volpXU q
PM,

where f1,U ˝ f
_
2,U P End0

pAq “M , and the volume factor is defined

volpXU q :“

ż

XU pCq

dxdy

2πy2
.

It takes value in Q. This is independent of the choice of the compact open subgroup
U Ă Bˆf . It follows that πA_ is dual to πA as M -representations of Bˆ.

Remark 17. We note that the pairing p¨, ¨q here plays the role of Petersson inner
product for an automorphic representation. This becomes more obvious when we
compare the Gross–Zagier formula with the Waldspurger formula (cf. (3.2) and
(2.4)).

Remark 18. When A is an elliptic curve, we have M “ Q and πA is self-dual. For
any morphism f P πA represented by a direct system tfUuU , we have

pf, fq “ volpXU q
´1 deg fU .

Here deg fU denotes the degree of the finite morphism fU : XU Ñ A, usually
referred as the “modular degree”, an invariant that contains important arithmetic
information of the elliptic curve A and has received wide attention.

3.5. Height pairing. The Néron–Tate height pairing is a Q-bilinear non-degenerate
pairing

x¨, ¨yNT : ApF qQ ˆA
_pF qQ ÝÑ R.

The field M “ End0
pAq acts on ApF qQ by definition, and acts on A_pF qQ through

the duality. Then one may define an M -bilinear pairing, called an M -linear Néron–
Tate height pairing

x¨, ¨yM : ApF qQ bM A_pF qQ ÝÑM bQ R

such that

x¨, ¨yNT “ trMbR{Rx¨, ¨yM .
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3.6. CM points. To introduce CM points, we let E{F be a totally imaginary
quadratic extension, with a fixed embedding AE ãÑ B over A. Then AˆE acts on

X by the right multiplication via AˆE ãÑ Bˆ. Let XEˆ be the subscheme of X of

fixed points of X under Eˆ. The scheme XEˆ is defined over F . By the theory of

complex multiplication, every point in XEˆpF q is defined over Eab and the Galois
action of GalpEab{Eq is given by the Hecke action under the reciprocity law.

Fix a base point P P XEˆpEabq given by a system of points PU P XU pE
abq

indexed by U Ă Bˆf . For τ P HompF,Cq, via the complex uniformization of XU,τ pCq
by (3.4), the point PU can be chosen to be represented by the double coset of
rz0, 1sU , where z0 P H is the unique fixed point of Eˆ in H via the action induced
by an embedding E ãÑ Bpτq.

Let A be an abelian variety over F parametrized by X with M “ End0
pAq. Let

χ : GalpEab{Eq Ñ Lˆ be a character of finite order, valued in a finite extension L
of M . For any f P πA, the image fpP q is a well-defined point in ApEabqQ. Consider
the integration

Pχpfq “

ż

GalpEab{Eq

fpP τ q bM χpτqdτ P ApEabqQ bM L,

where P τ is the Galois action of τ on P , the Haar measure on GalpEab{Eq has
total volume 1. It is essentially a finite sum, and it is easy to see that

Pχpfq P Apχq :“ pApEabqQ bM Lχq
GalpEab

{Eq.

Here Lχ denotes the M -vector space L with the action of GalpEab{Eq given by the
multiplication by the character χ. For Pχpfq ‰ 0, a necessary condition is that
the central character ωA of πA should be compatible with χ:

ωA ¨ χ|Aˆ “ 1.

From now on we assume this compatibility. Consider the L-vector space HomAˆE
pπAb

χ,Lq. The map f ÞÑ Pχpfq defines an element:

Pχ P HomAˆE
pπA b χ,Lq bL Apχq,

where we recall that the Hom space is at most 1-dimensional.

3.7. Local canonical invariant form. We need a local canonical invariant form
in the space

HomEˆv
pπA,v b χv, Lq bHomEˆv

pπ_A,v b χ
´1
v , Lq.

This is almost the same as the one α6 appearing in the Waldspurger formula except
we need to make it defined over L. Let p¨, ¨qv : πA,v ˆ π_A,v Ñ M be the canonical
pairing. We define αv formally by

αvpf1, f2q “

ż

Eˆv {F
ˆ
v

pπvptqf1, f2qv χvptqdt, f1 P πv, f2 P rπv.(3.6)

and normalize it by

α6vpf1, f2q “
Lp1, ηvqLp1, πv,Adq

ζFv p2qLp
1
2 , πv, χvq

αvpf1, f2q(3.7)

More precisely, we choose measures so that volpEˆv {F
ˆ
v q P Q and take an embedding

ι : L ãÑ C and define the above integral with value in C. We then show that, for
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all places v, the value of α6vpf1, f2q lies in L, and does not depend on the choice of
the embedding ι.

3.8. Gross–Zagier formula. Let πA,E denotes the base change of πA to E. View
χ as a character of EˆzAˆE via the reciprocity law EˆzAˆE ÝÑ GalpEab{Eq which
maps uniformizers to geometric Frobenii. Define the L-function

Lps, πA, χq “ Lps, πA,E b χq.

For example, if A is an elliptic curve over F {Q and χ is trivial, then the L-function
is the Hasse–Weil L-function associated to the base change A{E.

We identify the contragredient rπA “ πA_ by the duality map

p¨, ¨q : πA ˆ πA_ ÝÑM.

Then we have the following Gross–Zagier formula on Shimura curves ([56, The-
orem 1.2]), parallel to the Waldspuger formula (2.10).

Theorem 3.2. For any f1 “ bvf1,v P πA and f2 “ bvf2,v P πA_ , we have

xPχpf1q, Pχ´1pf2qyL

pf1, f2q
“

1

4

ζF p2qL
1p1{2, πA, χq

Lp1, ηq2Lp1, πA,Adq

ź

v

α6pf1,v, f2,vq

pf1,v, f2,vqv
(3.8)

as an identity in L bQ C. Here x¨, ¨yL : Apχq ˆ A_pχ´1q Ñ L bQ R is the L-
linear Néron–Tate height pairing induced by the M -linear Néron–Tate height pairing
x¨, ¨yM between ApF q and A_pF q.

Note that, in contrast to the Waldspurger formula, the appearance of Lp1, ηq2 is
caused by the different choice of the measure on AˆE{A

ˆ
F .

A necessary condition for Pχ ‰ 0 is that HomAˆE
pπAbχ,Lq ‰ 0. By the theorem

of Saito–Tunnell (cf. §2), the space HomAˆE
pπA b χ,Lq is at most one-dimensional,

and it is one-dimensional if and only if the ramification set ΣpBq of B is equal to
the set

ΣpA,χq :“ t places v of F : εp1{2, πA,v, χvq ‰ χvp´1qηvp´1qu .

In that case, since #ΣpBq is odd, the global root number

εp1{2, πA, χq “ ´1

and hence Lp1{2, πA, χq “ 0. If ΣpBq ‰ ΣpA,χq, the vector space HomAˆE
pπAbχ,Lq

is zero and thus both sides of the formula (3.8) are zero.
Back to the Gross-Zagier formula (3.2) or (3.3), the character χ “ 1 and the

generalized Heegner condition implies that

ΣpA,χq “ t` : `|N´u Y t8u.

The relevant Shimura curves are then the curves XN`,N´ .

3.9. Higher rank cases: the arithmetic Gan–Gross–Prasad conjecture.
There is also a natural generalization of the Gross–Zagier formula to higher rank,
called the arithmetic Gan–Gross–Prasad conjecture (and its refinement), formu-
lated in [9], [62], [63]. A relative trace formula approach has also been proposed by
the author in [63]. However, in contrast to the generalization of Waldspurger for-
mula, there are fewer results in this direction. One obstruction is the still unproven
“arithmetic fundamental lemma”, which will be stated below. This is only known
in the lower rank cases ([63]) or in some special cases ([40]). Moreover, one needs
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also an arithmetic version of “smooth matching” for the relevant Shimura varieties
at all places.

3.10. The arithmetic fundamental lemma. We state the conjectural arithmetic
fundamental lemma [63]. Fix a prime p and consider the following data:

‚ E “ Qp2 , unramified quadratic extension of Qp.
‚ V : Hermitian space of E-dimension n ` 1, with the Hermitian pairing
p¨, ¨q : V ˆ V Ñ E.

‚ u P V , pu, uq “ 1.
‚ For regular g P UpV q, define Lg to be the Zp2-lattice in V generated by
u, gu, ..., gnu. Here “regular” means that Lg has full rank.

‚ τ : V Ñ V : an E-linear involution (depending on g) characterized by
τpgiuq “ g´iu.

For comparison, we also recall the Jacquet–Rallis fundamental lemma, which is
a fundamental ingredient to proving the generalized Waldspurger formulas in §2.
We consider two type of lattices: self-dual lattices and conjugate-invariant lattices:

L self :“ tΛ Ă V : Zp2 -lattice,Λ˚ “ Λu,

where Λ˚ “ tv P V : pv,Λq Ă Zp2u, and

L conj :“ tΛ Ă V : Zp2-lattice,Λτ “ Λu.

Then the Jacquet-Rallis fundamental lemma is a family of identities relating weighted
counts of the two type lattices, indexed by (regular) g P UpV q:

ÿ

tΛPL conj :gΛ“Λ,LgĂΛĂL˚g u

p´1q`pΛq “
ÿ

tΛPL self :gΛ“Λ,LgĂΛĂL˚g u

1,(3.9)

where `pΛq is the length of Zp2-module Λ{Lg. This form of the statement was
proved by Z. Yun ([57]) for function fields of characteristic p¿n. In an appendix to
[57], J. Gordon showed that this implies the characteristic zero version when the
residue characteristic p is sufficiently large (compared to n).

To state the arithmetic fundamental lemma, we introduce the set of a third type
lattices which we call almost self-dual lattices:

L A´self :“ tΛ Ă V : Zp2 -lattice, pΛ Ă Λ˚ Ă Λu,

i.e., Λ{Λ˚ is killed by p. The almost-self dual lattices appear in parameterizing
irreducible components of the supersingular locus of unitary Shimura variety (type
Upn, 1q) in characteristic p. More precisely, by the Bruhat–Tits stratification on
the Rapoport–Zink space of unitary type pn, 1q ([51]), one may associate a stra-
tum to each almost self-dual lattice Λ. Then one may define a certain arithmetic
intersection multiplicity multpΛq along this stratum (cf. [40]).

Then the conjectural arithmetic fundamental lemma [63] can be stated as a
family of identities relating weighted counts of the two type lattices, indexed by
(regular) g P UpV q.

Conjecture 3.3. If L self is empty, then we have
ÿ

tΛPL conj :gΛ“Λ,LgĂΛĂL˚g u

p´1q`pΛq`pΛq “
ÿ

tΛPLA´self :gΛ“Λ,LgĂΛĂL˚g u

multpΛq.
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4. Kolyvagin conjecture and the structure of Selmer groups

4.1. Shimura curves and Shimura sets XN`,N´ . Let N “ N`N´ be a fac-
torization of a positive integer N such that pN`, N´q “ 1 and N´ is square-free.
Then we have defined a Shimura set (a Shimura curve over Q, resp.) by (2.2)
(by (3.4), (3.5), resp.) when νpN´q is odd (even, resp.), denoted by XN`,N´ . Its
complex points can be uniformly described as (possibly also joint with cusps when
N´ “ 1)

XN`,N´pCq » BˆpQqzBˆpAq{Rˆ`U8 ¨ pOB,N` b
pZqˆ,

where

‚ B is the unique-up-to-isomorphism quaternion algebra B over Q ramified
exactly at prime factors of N´ if νpN´q is even, and 8 if νpN´q is odd.

‚ U8 is the maximal connected compact subgroup of Bˆ8.
‚ OB,N` is an Eichler order of level N`.

4.2. Heegner points on Shimura curves. Let K “ Qr
?
´Ds be an imaginary

quadratic extension with discriminant ´D ă ´4, pD,Nq “ 1. This determines a
unique factorization N “ N`N´ as in (2.1). N´ is assume to be square-free and
νpN´q even so that we have a Shimura curve XN`,N´ . For simplicity we write
X “ XN`,N´ .

For n P Zą0 we let OK,n “ Z ` nOK be the order of OK with conductor n.
Denote by Krns the ring class field of K with conductor n, characterized by the
reciprocity law

rec : GalpKrns{Kq » Kˆz pKˆ{ pOˆK,n,

In particular, Kr1s “ HK is the Hilbert class field of K, and Krns is an abelian
extension of K only ramified at primes above factors of n, with Galois group
GalpKrns{Kq » PicpOK,nq.

In §3 (3.1), we have defined the Heegner point xp1q P XpHKq, yp1q P EpHKq, yK P
EpKq. There exists a collection of points xpnq on X defined over Krns. They are
sometimes called higher Heegner points, to be distinguished with xp1q. We describe
them in the case of modular curve X “ X0pNq, i.e., when N´ “ 1. Let N be an
ideal such that OK{N » Z{NZ. Then the ideal Nn “ N X OK,n is an invertible
OK,n-module. Then the elliptic curves C{OK,n and C{N´1

n are naturally related by
a cyclic isogeny of degree N , therefore define a point, denoted by xpnq, on X0pNq.
By the theory of complex multiplication, the point xpnq is defined over the ring
class field Krns.

Let E{Q be an elliptic curve of conductor N . Then it is parameterized by the
Shimura curve XN`,N´ :

φ : XN`,N´ ÝÑ E.(4.1)

Then one may define points

ypnq “ φpxpnqq P EpKrnsq.

The definition of ypnq depends on φ. From now on we will assume that φ is an
optimal parameterization.
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4.3. Kolyvagin cohomology classes. We first define Kolyvagin’s derived Heeg-
ner points and cohomology classes. Let p be a prime.

Definition 4.1. (1) For a prime ` - N , the p-divisibility of ` is defined as

Mp`q “ vppgcdpa`, `` 1qq,

where a` “ `` 1´#EpF`q. If n is square-free and pn,Nq “ 1, we define

Mpnq “ min
`|n

Mp`q

We also set
Mp1q “ 8.

(2) A prime ` - NDp is a Kolyvagin prime if it is inert in K and Mp`q ą 0.

Now let Λ be the set of square-free products of Kolyvagin primes and set

Λr “ tn P Λ : νpnq “ ru, ΛpMq “ tn P Λ : Mpnq ěMu,

where

νpnq “ #t` : `|nu.(4.2)

For n P Λ, we denote Gn “ GalpKrns{Kr1sq and Gn “ GalpKrns{Kq for n P Λ.
Then we have a canonical isomorphism:

Gn “
ź

`|n

G`,

where the group G` “ GalpKr`s{Kr1sq is cyclic of order ``1. We have the following
diagram:

Krns
Gn»PicpOK,nq Gn“

ś

`|nG`

Kr1s

PicpOKqK

Q
Fix a generator σ` of G` for each prime ` P Λ. We define the Kolyvagin derivative

operator

D` :“
``1
ÿ

i“1

iσi` P ZrG`s,

and
Dn :“

ź

`|n

D` P ZrGns.

Fix a set G of representative of Gn{Gn. Then we define the derived Heegner point

P pnq :“
ÿ

σPG

σpDnypnqq P EpKrnsq.(4.3)

From the short exact sequence

0 // ErpM s // E
ˆpM // E // 0 ,

we have an induced Kummer map

EpKq b Z{pM ÝÑ H1pK,ErpM sq.
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We have a commutative diagram of Kummer maps:

EpKq b Z{pM //

��

H1pK,ErpM sq

Res

��
pEpKrnsq b Z{pM qGn // H1pKrns, ErpM sqGn

Now assume that ρE,p is surjective. Then for n P Λ, we have ([16, Lemma 4.3])

ErpM spKrnsq “ 0.

Hence the restriction map

Res : H1pK,ErpM sq
» // H1pKrns, ErpM sqGn

is an isomorphism. When M ďMpnq, the derived point P pnq defines a Gn-invariant
element in EpKrnsqbZ{pM . Hence the Kummer image of P pnq in H1pKrns, ErpM sq
descends to a cohomology class denoted by

cM pnq P H
1pK,ErpM sq.(4.4)

When n “ 1, we find that

yK “ P p1q “ trKr1s{Kyp1q P EpKq,(4.5)

and cM p1q is the Kummer image of yK .

Definition 4.2. The mod pM Kolyvagin system is the collection of cohomology
classes

κpM “ tcM pnq P H
1pK,ErpM sq : n P ΛpMqu.(4.6)

We also write

κp8 “ tcM pnq P H
1pK,ErpM sq : n P Λ,Mpnq ěMu.(4.7)

Remark 19. One could also describe the action of the complex conjugation on all
of the classes cpnq. Let ε “ εpE{Kq P t˘1u be the root number E{Q. Define

εν “ ε ¨ p´1qν`1 P t˘1u.(4.8)

Then the class cpnq lies in the ενpnq-eigenspace under complex conjugation ([16,
Prop. 5.4]):

cpnq P H1pK,ErpM sqενpnq .

4.4. Kolyvagin conjecture. Define M pnq P Zě0 Y t8u to be the divisibility of
the derived Heegner point P pnq, i.e., the maximal M P Zě0 Y t8u such that

P pnq P pMEpKrnsq

(or we may write this as pM pnq||P pnq). Let Mr be the minimal M pnq for all n P Λr.
Then in [32] Kolyvagin shows that for all r ě 0:

Mr ě Mr`1 ě 0.(4.9)

Define

M8 “ lim
rÑ8

Mr(4.10)

as the minimum of Mr for varying r ě 0.
Then the conjecture of Kolyvagin [32, Conj. A] (generalized to Shimura curves)

asserts that



26 WEI ZHANG

Conjecture 4.3. Let E{Q be an elliptic curve with conductor N . Let K “

Qr
?
´Ds be an imaginary quadratic extension with discriminant ´D ă ´4, pD,Nq “

1. Assume that the residue representation ρE,p is surjective. Then the Kolyvagin
system (4.7)

κp8 ‰ t0u,

or, equivalently, M8 ă 8.

Definition 4.4. The vanishing order of κp8 P Zě0 Y t8u is defined as

ordκp8 :“ mintνpnq : n P Λ,M ďMpnq, cM pnq ‰ 0u,

(8 if all cM pnq vanish.) Similarly one may define the vanishing order of κpM

ordκpM :“ mintνpnq : n P ΛpMq, cM pnq ‰ 0u.

Clearly we have

ordκp8 ď ... ď ordκpM ď ordκpM´1 ď ... ď ordκp.

The conjecture 4.3 is equivalent to

ordκp8 ă 8.

Remark 20. Clearly we have

ordκp8 “ 0 ðñ yK P EpKq is non-torsion.(4.11)

Hence the conjecture 4.3 holds trivially if the Heegner point yK is non-torsion.

It is important to know the value M8. Indeed, one may refine the conjecture to
predict M8 in terms of local Tamagawa numbers, based on the following ingredients
when ranpE{Kq “ 1:

‚ Birch–Swinnerton-Dyer conjecture (the refined formula (1.13)).
‚ Gross–Zagier formula for XN`,N´ (3.3).

‚ Kolyvagin’s theorem that #XpE{Kqrp8s “ p2pM0´M8q.
‚ Ribet–Takahashi’s comparison of modular degrees in (3.3):

ˇ

ˇ

ˇ

ˇ

degpfq

degpφq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

`|N´

c`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

,

for a prime p where ρE,p is irreducible.

‚ Mazur’s theorem on the Manin constant c asserts that p|c ùñ p2|4N .

Then the refined Kolyvagin conjecture can be stated as follows.

Conjecture 4.5. Assume that ρE,p is surjective. Then

M8 “ vpp
ź

`|N`

c`q.

In [67] we prove the refined Kolyvagin conjecture for p ě 5 satisfying certain local
conditions. For application to the Birch–Swinnerton-Dyer conjecture for E{Q, these
local conditions are mild by a careful choice of the auxiliary K and the Shimura
curve.

Theorem 4.6. Let E be a semistable elliptic curve with conductor N . Let p,K
satisfy the following conditions

(1) E has good ordinary reduction at p ě 5.
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(2) ρE,p is surjective.
(3) If ` ” ˘1 mod p and `|N , then ρE,p is ramified at `.

(4) νpN´q is even and ρE,p is ramified at all `|N`.

We have

κp “ tc1pnq P H
1pK,Erpsq : n P Λu ‰ t0u,

or equivalently M8 “ 0 (or equivalently, p - P pnq for some n P Λ). In particular,
κp8 ‰ 0.

Remark 21. Under the hypothesis (4), we have vpp
ś

`|N` c`q “ 0.

Remark 22. The refined Kolyvagin conjecture—combined with the five items above—
implies the p-part of the B-SD formula for E{K when ranpE{Kq “ 1. By a suitable
choice of an auxiliary K using the result of [7] or [38], we may then prove Theorem
1.6.

4.5. The structure of Selmer group. Under the irreducibility of ρE,p, we have
an injection

H1pK,ErpM sq ãÑ H1pK,ErpM`M
1

sq, M,M 1 ě 1.

The group H1pK,ErpM sq can be viewed as the kernel of the multiplication by pM

on H1pK,ErpM`M
1

sq. If an element c P H1pK,ErpM`M
1

sq is killed by pM , we
will view c as an element in H1pK,ErpM sq. More generally, we have a short exact
sequence:

0 // H1pK,ErpM sq // H1pK,Erp8sq
pM // H1pK,Erp8sq.

In this way we naturally view cpnq P H1pK,ErpM sq as an element of H1pK,Erp8sq.
Let Sel˘p8pE{Kq be the two eigenspaces under the action of the nontrivial element

in GalpK{Qq. Let r˘p pE{Qq be the corresponding Zp-corank.

Theorem 4.7 (Kolyvagin, [31], [32]). Let E{Q be an elliptic curve of conductor N .
Consider K “ Qr

?
´Ds with discriminant ´D ă ´4, pD,Nq “ 1, νpN´q even.

Let p ě 3 be a prime where ρE,p is surjective and p - ND. Assume that Conjecture
4.3 holds, i.e.,

κp8 ‰ 0,

or equivalently, M8 ă 8. Then we have

(1) maxtr`p , r
´
p u “ ordκp8 ` 1. Indeed, denoting ν “ ordκp8 , then we have

that rενp “ ν ` 1, and 0 ď ν ´ r´ενp ” 0 mod 2. Here εν is as in (4.8).

(2) The group Selενp8pE{Kq is contained in the subgroup of H1pK,Erp8sq gen-
erated by all cM pnq, n P Λ,M ďMpnq.

(3) As abstract abelian groups, we write Sel˘p8pE{Kq » pQp{Zpqr
˘
p ‘ĂXpE{Kq˘p8 ,

where ĂXpE{Kq˘p8 is a finite group. Then we have

ĂXpE{Kq˘rp8s »
à

iě1

pZ{pa
˘
i Zq2, a˘1 ě a˘2 ě ...,

where
#

aενi “ Mν`2i´1 ´Mν`2i, i ě 1,

a´εν
i`pν´r´ενp q

“ Mν`2i´2 ´Mν`2i´1, i ě 1.
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In particular, we have

#ĂXpE{Kqrp8s ě p2pMν´M8q,

and the equality holds when ν “ 0.

Remark 23. When ranpE{Kq “ 1, the Gross–Zagier formula (3.3) implies that the
Heegner point yK P EpKq is non torsion. It then follows that κp8 ‰ 0, and indeed
ordκp8 “ 0 by (4.11). Then the theorem above implies Theorem 1.4.

Remark 24. The group ĂXpE{Kqrp8s is the hypothetically finite groupXpE{Kqrp8s.

Indeed, ifXpE{Kqrp8s is finite, then ĂXpE{Kqrp8s »XpE{Kqrp8s.

Therefore, under the hypothesis of Theorem 4.6, all (1)–(3) in Kolyvagin’s the-
orem 4.7 hold. This then implies Theorem 1.8 by a suitable choice of auxiliary K.
Moreover, one may then show that for a broad class of E{Q, Selp8pE{Qq (of arbi-
trary rank) can be constructed from Heegner points defined over ring class fields of
a suitable K.
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